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Abstract

Greater skill of active investment managers can mean less fee revenue in a general equilib-

rium. Although more-skilled managers earn more revenue than less-skilled managers, greater

skill for active managers overall can imply less revenue for their industry. Greater skill allows

managers to identify mispriced securities more accurately and thereby make better portfolio

choices. Greater skill also means, however, that active management corrects prices better

and thus reduces managers’ return opportunities. The latter effect can outweigh managers’

better portfolio choices in equilibrium. Investors then rationally allocate less to active funds

and more to index funds if active management is more skilled.
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1. Introduction

Active investment managers seek to outperform a passive benchmark portfolio by identify-

ing and trading securities likely to over- or under-perform. In exchange for doing so, the

managers are compensated by fees their investors pay. The fees are supported by active man-

agers’ investment profits, in excess of what investing in the benchmark would produce. Given

the alternative of investing in the passive benchmark, rational investors do not consistently

invest with active managers whose fees are not covered by investment profits.

Should active managers produce greater investment profits, and thus receive more fee

revenue, if they are more skilled? A more-skilled manager should receive more fee revenue

than a less-skilled manager, but that is not the whole story. There are many active man-

agers. What if most of them become more skilled? Then, for example, a stock that is truly

underpriced is more likely to be identified correctly as such by active managers, and that

stock is more likely to be bought by them. This collective higher demand for the stock

raises the price managers pay for it, reducing the investment profit they make from buying

it. That is the negative effect of skill on profits, working against the positive effect of better

identifying the right stocks to buy. Of course the same opposing effects of skill apply to

overpriced stocks, raising the chances such stocks are correctly identified but reducing the

investment profits from under-weighting or shorting them.

What is the outcome of the opposing skill effects for active managers’ investment profits,

and thus fee revenue? The answer can go either way, with greater skill producing either

more revenue or less for the active management industry. For seemingly plausible scenarios

explored here, greater skill brings lower fee revenue in a general equilibrium that captures

the effects of skill on stocks’ prices.

The model essentially extends Berk and Green (2004) to a general equilibrium by intro-

ducing a universe of many stocks, whose prices are influenced by the portfolio demands of

many competing active managers. Otherwise the model has familiar features. Chief among

them, as in Berk and Green (2004), is that all of the benchmark-beating investment profit

produced by active managers is captured as fee revenue, so their investors earn zero net

alpha. In equilibrium, investors are indifferent between putting their last incremental dollar

of stock-market investment into an active fund versus a passive index fund, as both funds

offer the same expected benchmark-adjusted return.

One mechanism through which the returns on active and passive funds are equalized
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involves trading costs, which are introduced in the same manner as Stambaugh (2014) and

Pástor, Stambaugh, and Taylor (2019): an active fund’s proportional cost of trading a stock is

increasing in the amount of that stock the fund trades. These stock-level trading costs mean

the fund effectively faces decreasing returns with respect to its size, as a larger fund trades

larger dollar amounts of stocks and thus incurs higher proportional costs. In this respect the

model of active management here, with convex trading costs paid to intermediaries, differs

from those of Garcia and Vanden (2009) and Gârleanu and Pedersen (2018), for example,

in which managers do not face such liquidity costs and the resulting decreasing returns to

scale. Berk and Green (2004) assume decreasing returns with respect to fund size, reasoning

that trading costs are convex in fund size. That mechanism in their model, also essentially

at work here, allows active and passive returns to equalize in equilibrium.

Including trading costs in a model of the active management industry seems desirable,

given empirical evidence of such costs’ economic importance. For example, Edelen, Evans,

and Kadlec (2007) conclude that trading costs present an important source of scale disec-

onomies for mutual funds. Edelen, Evans, and Kadlec (2013) find that mutual funds’ trading

costs as a fraction of net asset value are comparable in magnitude to the funds’ expense ra-

tios. The latter result is consistent with the model presented here, which implies that funds’

trading costs equal their fee revenues.

Pástor and Stambaugh (2012) introduce decreasing returns with respect to the overall

scale of the active management industry. They consider a setting in which competing man-

agers do not internalize the effect of the industry’s scale on investment profits. Similarly,

the many competing active managers in my model do not internalize the effect of their

aggregated demands on equilibrium stock prices. These pricing effects, which reduce each

manager’s overall profit in equilibrium, constitute the model’s other source of decreasing

returns to industry scale, in addition to the trading costs paid to intermediaries.

The model implies that the skill of an active manager relevant to fee revenue is captured

by the correlation across stocks between the manager’s assessed alphas and the stocks’ true

alphas. The correlation is defined with respect to the value-weight measure, meaning that

the probability weight assigned to the stock when computing cross-sectional moments is the

stock’s weight in the market portfolio. Conditional on the amount of equilibrium mispricing,

a more-skilled manager receives more fee revenue than a less-skilled manager. This cross-

sectional relation between fee revenue and skill is consistent with the arguments and evidence

of Berk and van Binsbergen (2015). Of course, conditioning on the amount of mispricing, in

a partial equilibrium, does not address how the overall skill level of active managers affects
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mispricing and hence fee revenue.

To address the pricing effects, I specify additional features of the market and derive a

general equilibrium. For active management in aggregate to beat the market benchmark,

before costs and fees, other market participants must underperform that benchmark (e.g.,

Sharpe (1991)). The potentially underperforming segment is typically assumed to comprise

“noise” traders whose asset demands deviate exogenously from those consistent with rational

assessments of fundamental values. I include such noise traders in the model. The distribu-

tion of the stock-specific distortions introduced by noise traders for a large cross section of

stocks is flexibly characterized by a single parameter, following Stambaugh (2014). Unlike

that study, I maintain for simplicity the zero-net-alpha assumption for active funds, thereby

extending the Berk and Green (2004) model to a general equilibrium.

For the general equilibrium model, I specify two exogenous dimensions along which man-

agers make valuation errors that impair skill. The first dimension allows stock-specific dis-

tortions reflected in noise-traders’ demands to arise in the beliefs of active managers to some

extent as well. The motivation here is that the noise-trader demands might reflect pervasive

sentiment about individual stocks to which professional managers are also somewhat suscep-

tible. Such a scenario seems motivated, for example, by the empirical evidence of Dasgupta,

Prat, and Verardo, (2011), Akbas, Armstrong, Sorescu, and Subrahmanyam (2015), Edelen,

Ince, and Kadlec (2016), and DeVault, Sias, and Starks (2018). The second dimension of

valuation errors is idiosyncratic across managers, reflecting manager-specific limitations and

mistakes.

Active management corrects prices less when skill is impaired by either a partial echoing

of noise-trader demands or by manager-specific errors. Not surprisingly, the more that

managers’ active positions echo noise-trader demands, the less that establishing those active

positions corrects the mispricing that noise traders originate. Manager-specific errors wash

out across managers and do not affect the mispricing of one asset relative to another. At

the same time, however, the overall aggressiveness of an individual manager’s positions is

limited by trading costs. The more such positions across individual stocks reflect manager-

specific errors, which wash out of aggregate active positions, the less aggressive the aggregate

positions become, and the less prices get corrected.
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2. Model assumptions

The model considers a single investment period. Active managers identify and exploit oppor-

tunities to outperform the market benchmark by having their weights on individual stocks

deviate from those of the benchmark. The ultimate objective of the active managers is to

maximize the fee revenue received from the investors they attract. There are many managers,

acting competitively, each taking stock prices as given. Each manager incurs trading costs

when deviating from benchmark stock weights. At the beginning of the period, manager

j sets a proportional fee rate equal to f (j). Investors then invest in aggregate the dollar

amount W (j) with the manager, whose fee revenue is thus F (j) = f (j)W (j).

2.1. Trading costs and decreasing returns to scale

The trading costs faced by active managers are convex in the amount traded. Specifically,

for any manager, I assume the dollar cost Ci of trading dollar amount Di of stock i is

Ci = cδiDi, (1)

where δi is the fraction of stock i’s total market capitalization represented by Di, and c is

a constant. In other words, the proportional trading cost is linear in the amount traded.

These costs represent compensation to liquidity-providing intermediaries for taking short-

lived positions to facilitate the ultimate market clearing in a stock between managers and

noise traders. In this interpretation, the trading cost is not to be viewed as a manager-specific

price impact, such that if many other managers independently produce similar price impacts,

the sum of such impacts aggregates to an implausibly large total price effect. Instead, one

might imagine many intermediaries accessing different sources of liquidity or acting at slightly

different times. This specification of trading costs also appears in Stambaugh (2014) and

Pástor, Stambaugh, and Taylor (2019).

Convex trading costs imply active managers face decreasing returns to scale. Larger funds

trade larger dollar amounts, representing larger fractions of stocks’ market capitalizations,

so proportional trading costs increase in fund size. An assumption of fund-level decreasing

returns to scale is central to the model of Berk and Green (2004).
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2.2. Zero net alpha for funds

Let α
(j)
A denote active fund j’s alpha net of costs and fees, defined with respect to investors’

passive alternative, the market index fund. As in Berk and Green (2004), I assume investors

allocate money to an active fund up to point at which additional investment in the fund,

given decreasing returns to scale, would drive α
(j)
A below zero. That is, the equilibrium size

of a given active fund j is such that

α
(j)
A = 0. (2)

Berk and Green (2004) impose equation (2) in analyzing a partial equilibrium, with the

sources of an active fund’s benchmark-beating gross returns not modeled. I begin by impos-

ing the same zero-alpha condition in a partial equilibrium. Later, in a general equilibrium

with noise traders, I link the sources of the fund’s gross returns to departures of endogenously

determined prices from their fundamental values.

The most natural assumption motivating α
(j)
A = 0 is that investors are risk neutral.

In that setting, any deviation of the fund’s expected net return from that of the passive

benchmark prompts a flow of investor money to or from the fund such that the deviation is

removed.1

When investors are instead risk averse, equation (2) is better viewed as an approximation

to the equilibrium. The reason is that if active managers on the whole possess skill to iden-

tify mispriced securities, then the departures of active managers’ portfolios from benchmark

weights are at least somewhat correlated across managers. The result of this correlation is

that a non-diversifiable risk component, uncorrelated with the benchmark return, is present

in active fund returns.2 This additional risk will generally not be borne by risk-averse

investors without compensation, requiring α
(j)
A > 0.3 This point is made in a partial equilib-

rium by Pástor and Stambaugh (2012) and in a general equilibrium by Stambaugh (2014).

Calibrations in both studies, however, suggest that violations of equation (2) are likely to

be modest in economic magnitude. I impose the zero-alpha condition here for tractability,

especially when considering skill differences across managers. Stambaugh (2017) provides a

1Indeed, in an earlier version of their published study, Berk and Green (2003, p. 6) assume that investors
are risk neutral.

2If risk-averse investors seek to maximize their Sharpe ratios, for example, then the active-management
alpha relevant to them is the difference between the expected net return and beta times the expected market
benchmark return. The mean-zero tracking error accompanying this alpha is then uncorrelated with the
benchmark return. In keeping with a risk-neutral motivation, the alpha in equation (2) is instead defined
below as the simple difference between the fund’s expected net return and the expected benchmark return.

3Recall that this alpha is defined with respect to the market benchmark as opposed to the stochastic
discount factor pricing all individual assets.
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related analysis in a risk-averse setting that delivers the same message as this study about

the effect of greater industry-level skill.

2.3. Stocks

The stock market contains N stocks, and the total supply of each stock equals one share.

Stock i has share price pi at the beginning of the investment period and value (including

dividends) equal to xi at the end of the period . The market portfolio has total end-of-

period value xm =
∑N
i=1 xi. There are N shares in the market portfolio, each with price

pm = (1/N)
∑N
i=1 pi. Let µ denote one plus the required discount rate, equal across stocks

in the risk-neutral setting. Let x̄i equal the correct expected value of xi, in the sense that if

pi, is equal to

p̄i =
x̄i
µ
, (3)

then stock i is priced at its fundamental value. I assume the overall market is fairly priced,

so that

pm =
x̄m
Nµ

. (4)

That is, active managers can profit only through stock picking, not market timing or overall

asset allocation. The expected difference in return between stock i and the market benchmark

is therefore equal to

αi =
x̄i
pi
− µ = µ

(
p̄i − pi
pi

)
. (5)

2.4. Fund managers’ expectations

Manager j expects end-of-period value for stock i to be x̃
(j)
i instead of x̄i, i = 1, . . . , N .

I assume the manager does not misvalue the overall market, however, so
∑N
i=1 x̃

(j)
i = x̄m.

Instead of the true alpha in equation (5), manager j’s assessed alpha for stock i is therefore

α̃
(j)
i = µ

 p̃(j)i − pi
pi

 , (6)

with the manager’s assessed fair price for the stock being

p̃
(j)
i =

x̃
(j)
i

µ
. (7)

I do not assume managers use their available information correctly in forming rational

expectations about the payoffs on individual stocks. The difference between x̃
(j)
i and x̄i
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can reflect a failure to condition correctly on whatever information is available. In that

sense, a more skilled manager simply makes smaller conditioning mistakes. While not a

necessary assumption, one interpretation of x̄i is that it represents the correct conditional

expectation given a common signal about stock i that is observed by all of the managers,

each of whom pays a cost to be a manager. Such an interpretation is somewhat analogous to

having perfectly skilled managers, for whom x̃
(j)
i = x̄i, correspond to the Grossman-Stiglitz

(1980) rational informed agents who pay a cost to observe a common informative signal.

A common-signal scenario is motivated, for example, by the U.S. Securities and Exchange

Commission’s Regulation Fair Disclosure, which seeks to reduce disparities across investors

in the information released by firms.

The distinction between exercising skill versus acquiring costly information can be il-

lustrated via the findings of McLean and Pontiff (2016). That study’s evidence suggests

arbitrageurs (corresponding to fund managers in the current setting), upon the publication

of academic studies, learn how various stock characteristics can be used to produce alpha

by buying some stocks and selling others. The stock characteristics are generally publicly

or rather cheaply available, as are the academic studies. In the post-publication scenario

supported by the study, arbitrageurs don’t condition on additional costly information but

instead simply condition better on information (stock characteristics) already at hand.

Define manager j’s active weight in stock i as

φ
(j)
i = φ

(j)
A,i − φm,i, (8)

where φ
(j)
A,i is stock i’s weight in the manager’s portfolio, and φm,i is stock i’s weight in the

market portfolio. Note that
N∑
i=1

φ
(j)
i = 0. (9)

Let g(j) denote the true gross alpha on the manager’s portfolio, given by

g(j) =
N∑
i=1

φ
(j)
i αi, (10)

and define g̃(j) as

g̃(j) =
N∑
i=1

φ
(j)
i α̃i, (11)

which is the gross alpha on the portfolio implied by the α̃
(j)
i ’s.
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2.5. Fund-level rational expectations and managers’ optimization

While I do not assume managers form rational expectations about payoffs on individual

stocks, I do assume both investors and managers have rational expectations about fund-level

performance. That is, neither a fund’s manager nor its investors are surprised on average

by the fund’s performance, whether gross or net of fees and costs. In this respect, although

the model operates within a single period, I implicitly assume that this period is preceded

by sufficiently many having the same properties, such that investors and managers come to

have rational expectations about fund-level quantities. In other words, both investors and

managers have realistic assessments of a manager’s skill insofar as how it translates to fund

performance.

The specifics of this assumption involve the following. Consider the fund’s true net alpha,

given by

α
(j)
A = g(j) − C(j)/W (j) − f (j), (12)

where C(j) equals the fund’s total trading cost,

C(j) = c
N∑
i=1

(
|φ(j)
i |W (j)/pi

)
︸ ︷︷ ︸

δi

|φ(j)
i |W (j)︸ ︷︷ ︸
Di

= c
(
W (j)

)2 N∑
i=1

(
φ
(j)
i

)2
/pi, (13)

obtained by applying equation (1). I assume that investors correctly assess α
(j)
A and that

they invest W (j) with the fund such that equation (2) is satisfied. I also assume fund

managers know that their equilibrium fund sizes are determined as such, and thus managers

are not surprised by the amount of fee revenue they receive. That revenue is determined

by setting the right-hand side of equation (12) equal to zero (by equation (2)), substituting

from equation (13) for C(j), solving for W (j), and then multiplying through by f (j), giving

F (j) =
f (j)

(
g(j) − f (j)

)
c
∑N
i=1

(
φ
(j)
i

)2
/pi

. (14)

This assumption about managers means that even though they incorrectly assess the true

alphas of individual stocks, they correctly assess the true gross alphas of their portfolios.

Specifically, manager j knows by experience the value of λ(j) such that

g(j) = λ(j)g̃(j). (15)

Combining equations (11), (14), and (15) gives fee revenue as

F (j) =
f (j)

(
λ(j)

∑N
i=1 φ

(j)
i α̃i − f (j)

)
c
∑N
i=1

(
φ
(j)
i

)2
/pi

, (16)
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which the manager maximizes by choosing φ
(j)
1 , . . . , φ

(j)
N and f (j), subject to equation (9).

3. Skill and fees in the cross section

The partial equilibrium condition in equation (2) and the additional assumptions above

deliver implications about the cross section of skill versus revenue as well as the role of the

fee rate.

3.1. Differences in fee revenue across managers

The following proposition reveals what drives differences in fee revenue across managers.

(Proofs of all propositions are in the Appendix.)

Proposition 1. Manager j’s fee revenue in equilibrium is given by

F (j) =
Vm
4c
ψ
(
ρ(j)

)2
, (17)

with

ψ = Var∗(α) (18)

and

ρ(j) =
Cov∗(α̃(j), α)

[Var∗(α)Var∗(α̃(j))]
1/2
, (19)

where Vm is the value of the stock market (Npm). The moments Var∗(·) and Cov∗(·, ·)
denote the cross-sectional variance and covariance of stock-specific quantities, defined across

the N stocks using the stocks’ market-capitalization weights (i.e., the values of pi/Vm as

probabilities). The manager’s choice of the fee rate, f (j), does not affect the equilibrium

value of F (j).

We see from the above that differences in fee revenue across managers depend solely

on ρ(j), the correlation across stocks between the manager’s assessed alphas and the true

alphas (with correlation defined over the value-weight measure). This correlation captures

the manager’s revenue-relevant skill. The higher is ρ(j), the more skilled is the manager in

assessing relative alphas across stocks. Managers with greater skill earn more fee revenue

than those with less skill. This implication is consistent with the empirical evidence of Berk
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and van Binsbergen (2015). They find that, in a sample of over 6,000 active equity mutual

funds, greater fee revenue is collected by funds exhibiting greater skill. They measure a

fund’s skill as its estimated “value added,” the fund’s assets under management (AUM)

times the fund’s alpha gross of its fee rate. Fund j’s value added is thus VA = W (j)(α
(j)
A +

f (j)), which under the equilibrium condition in equation (2) is simply equal to F (j). Cross-

sectional differences in value added, given the latter’s equivalence to fee revenue in this

setting, therefore perfectly correlate with managers’ skills in assessing stock’s true alphas.

Equation (17) shows that those alphas by themselves also play a role in the manager’s value

added, via the quantity ψ.

The value of ψ, the true alphas’ cross-sectional variance (defined over the value-weight

measure), captures the revenue-relevant mispricing present in equilibrium. The larger is

the variance of the αi’s, the greater are the relative deviations of pi from p̄i, as is evident

from equation (5). Equation (17) shows that, ceteris paribus, greater equilibrium mispricing

is accompanied by higher fee revenue for all managers, as ψ is not manager-specific. The

equilibrium analyzed thus far is a partial one, however, in that equilibrium prices, and thus

the determinants of ψ, are not addressed. One of those determinants is the collective skill

of active management as an industry, as shown in the general equilibrium analyzed later.

3.2. Portfolio weights and fee rates

The following proposition reveals the role played by the manager’s fee rate, f (j), and why it

is irrelevant for equilibrium fee revenue, F (j).

Proposition 2. Manager j’s active weight in stock i is

φ
(j)
i = 2f (j)µ

(
Nλ(j)ψ̃(j)

)−1 p̃(j)i − pi
pm

 , (20)

with

ψ̃(j) = Var∗(α̃(j)). (21)

Trading costs equal fee revenue in equilibrium,

C(j) = F (j), (22)

and the gross alpha is twice the fee rate,

g(j) = 2f (j). (23)
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The value of λ(j), defined in equation (15), is given by

λ(j) =
Cov∗(α̃(j), α)

Var∗(α̃(j))
. (24)

The irrelevance of f (j) for the equilibrium F (j) means that raising f (j) simply gives the

manager proportionately lower W (j) to manage. In managing that lower W (j), we see from

equation (20) that the manager simply scales up all of the active weights in proportion to

the higher fee rate f (j). The dollar sizes of the active positions, and thus total trading

costs, are unaffected. The fund’s portfolio becomes less diversified, however, in the sense

that the portfolio weights depart more from benchmark weights. Pástor, Stambaugh, and

Taylor (2019) find empirically that among active equity mutual funds, those with a higher

f (j), measured as the expense ratio, tend to be less diversified in this sense, consistent

with this implied tradeoff. That study also finds a negative correlation between f (j) and

W (j), consistent with the product of those quantities, fee revenue, being more fundamentally

relevant than either quantity individually. Berk and Green (2004) include a setting that

also implies the fee rate’s irrelevance and its inverse relation to departures from benchmark

weights.

4. Skill and fees of the industry in general equilibrium

To analyze a general equilibrium, I make further assumptions, all of which are nested in

the setting presented thus far. The most notable is to assume that all active managers are

equally skilled, in a manner specified below. Abstracting from cross-manager differences

sharpens the focus on overall industry skill, in addition to making the equilibrium solution

tractable.

4.1. Additional assumptions

The number of active managers in the model, M , while finite, is sufficiently large to maintain

the earlier assumption that each manager takes stock prices as given. Intermediaries receive

the trading costs incurred by active managers but otherwise play no role. Noise traders own

fraction h of total stock-market wealth and invest through neither the M active managers nor

index funds. Investors own the remaining fraction 1−h of stock-market wealth. They invest

in the stock market only through the active managers and index funds. Passive managers
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offer a zero-cost market-index fund that invests any money the investors do not allocate to

active managers.

Who are the noise traders? They can be individuals who invest directly in stocks with-

out involving professional managers, such as in Stambaugh (2014). They can also represent

professional managers with negative gross alpha who nevertheless receive money from un-

witting investors similar to the “noise allocators” in Gârleanu and Pedersen (2018). Such

managers are not included in the model’s M active managers, as each of the latter instead

has a zero net alpha in equilibrium. Also, the money placed with any negative-gross-alpha

managers is included in the fraction h of stock-market wealth owned by noise-traders, not

in the remaining fraction 1− h owned by the model’s investors.

Let φH,i denote the weight on stock i in the aggregate portfolio of the noise traders, with

φH,i assumed to be exogenous and non-negative (no short selling by the noise traders). The

price of stock i that would arise in an equilibrium with no active management, with prices

thus determined solely by the asset demands of noise traders, is equal to

p̂i = NpmφH,i. (25)

Note that p̂i does not depend on h, the fraction of the market owned by noise traders. That

is, even a small presence of noise traders could distort prices significantly in the absence of

active management.

I assume that manager j’s assessment of the fair price for stock i obeys

p̃
(j)
i = (1− ν1)p̄i + ν1p̂i + ν2ζ

(j)
i p̄i, (26)

with 0 ≤ ν1 < 1 and ν2 > 0. The ζ
(j)
i ’s are purely idiosyncratic across both stocks and

managers and cross-sectionally independent of both the p̄i’s and p̂i’s. For a given manager

j, the ζ
(j)
i ’s have zero mean and unit variance across stocks. The overall market remains

correctly valued, with

Npm =
N∑
i=1

p̂i =
N∑
i=1

p̃i. (27)

Although managers’ beliefs differ from each other to at least some degree, because ν2 > 0,

managers are equally skilled in that the exogenous parameters ν1 and ν2 are the same across

managers. The skill with which managers assess stocks’ fundamental values is decreasing in

both ν1 and ν2. The parameter ν1 governs the extent to which noise-traders’ demands also

arise in the beliefs of active managers, as discussed earlier. The parameter ν2 governs the

magnitudes of manager-specific limitations and mistakes.
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4.2. Equilibrium conditions

An equilibrium occurs when, simultaneously,

1. for each manager j, the choices of φ
(j)
1 , . . . , φ

(j)
N , and f (j) satisfy the manager’s maxi-

mization of fee revenue, F (j),

2. α
(j)
A = 0 holds for each manager, and

3. stock prices, {p1, p2, . . . , pN} satisfy the market-clearing condition

hφH,i + (1− h)φS,i = φm,i, i = 1, . . . , N, (28)

where φm,i = pi/
∑N
j=1 pj is stock i’s market weight, φH,i is the stock’s weight in the

aggregate stock portfolio of the noise traders, and φS,i is the stock’s weight in investors’

aggregate stock portfolio (which combines the index fund with the aggregate active

portfolio).

4.3. Implications

The following proposition characterizes the stock prices and fee revenue that satisfy equilib-

rium.

Proposition 3. In equilibrium, ρ(j) and ψ̃(j) are identical across managers and denoted as

ρ and ψ̃. Fee revenue is identical across managers, given by

F =
Vm
4c
ψρ2, (29)

and the ratio of aggregate fee revenue to the total value of the stock market is

Π =
M

4c
ψρ2. (30)

The price of stock i is given by

pi = p̄i + θ(p̂i − p̄i), (31)

where the scalar, θ, equal across stocks, is the solution to

θ =
1 + ν1q(θ)

1 + q(θ)
, (32)
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with

q(θ) =

(
θ − ν1
θ

)(
ψ

ψ̃

)(
Mµ

2ch

)
, (33)

ψ = θ2µ2
(

1

N

) N∑
i=1

[(p̂i − p̄i)/pm]2

p̄i/pm + θ[(p̂i − p̄i)/pm]
, (34)

and

ψ̃ =

(
θ − ν1
θ

)2

ψ + ν22µ
2
(

1

N

) N∑
i=1

(p̄i/pm)2

p̄i/pm + θ(p̂i − p̄i)/pm
. (35)

The value of the skill measure, ρ, is given by

ρ =

(
θ − ν1
θ

)(
ψ

ψ̃

)1/2

. (36)

For a given quantitative specification of the noise-trader demands, as provided in the next

section, the value of the scalar θ can be obtained by solving equation (32) numerically.

The general equilibrium reveals the role of skill in price correction. As shown earlier,

a partial equilibrium is sufficient to show that ρ captures each manager’s fee-relevant skill,

conditional on a given amount of equilibrium mispricing. Of course, that property of ρ still

holds in the general equilibrium. In the latter, however, the amount of mispricing depends on

skill as well. Each manager, being one of many, takes prices as given when making decisions,

but the skill all managers apply to those decisions affects how much mispricing survives in

equilibrium. The amount of mispricing that is relevant for fee revenue is captured by ψ.

Note from equation (34) that ψ depends on θ, which from equation (31) is the fraction of

mispricing that survives, relative to the mispricing that would prevail in the absence of active

management. The solution for θ in turn depends on both ν1 and ν2, the parameters that

govern the skill with which managers assess fundamental value, via equation (26). The next

section illustrates that the product ψρ2 in equation (29) can either increase or decrease in

response to a simultaneous increase in ρ and decrease in ψ. In other words, fee revenue need

not increase with skill.

Although both ν1 and ν2 matter for θ, note from equation (26) that prices do not contain

any of the manager-specific noise given by the last term in equation (26). That noise washes

out of the ratio of one active weight to another in the aggregate portfolio of active managers,

but the presence of such noise does impact the magnitudes of those weights and thus the

degree of price correction.

Useful for the later quantitative analysis is a measure that summarizes the size of the

active positions in the aggregate portfolio of active managers. The first step in construct-
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ing such a measure is to obtain that portfolio’s active weights, provided by the following

proposition.

Proposition 4. The active weight on stock i in the aggregate portfolio of active managers

is given by

φi = −2f̄µθ

Nψ

(
p̂i − p̄i
pm

)
, (37)

where f̄ is the harmonic mean of fee rates,

f̄ =

 1

M

M∑
j=1

1

f (j)

−1 . (38)

Cremers and Petajisto (2009) propose active share as a measure summarizing the degree to

which a portfolio’s weights deviate from those of a benchmark portfolio. Their definition of

active share applied to the aggregate active portfolio, with respect to the market benchmark,

is given by

AS = (1/2)
N∑
i=1

|φi|. (39)

Substituting the expression for φi in equation (37) gives

AS =
f̄µθ

ψ

(
1

N

) N∑
i=1

∣∣∣∣∣ p̂i − p̄ipm

∣∣∣∣∣ . (40)

Multiplying AS by the amount of money allocated to active management, W , puts the

economic magnitude of active share in dollar terms, what might be termed “active position.”

For a given set of active portfolio weights, active management’s impact on equilibrium prices

is greater the larger the amount of money being deployed at those weights. Applying equation

(29),

W =
M∑
j=1

W (j) =
M∑
j=1

F (j)

f (j)
=
Npmψρ

2

4c

M∑
j=1

1

f (j)
=
NpmMψρ2

4c

(
f̄
)−1

. (41)

Dividing W ×AS by Npm gives the active position as a fraction of the total value of the

stock market,

AP =
Mρ2µθ

4c

(
1

N

) N∑
i=1

∣∣∣∣∣ p̂i − p̄ipm

∣∣∣∣∣ . (42)

The value of AP , which essentially gauges the size of active management’s trading footprint

on the market, proves useful in understanding the amount of price correction that active

management effects.
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5. Quantitative analysis

5.1. Parameter specifications

The main task in parameterizing the model is specifying the exogenous noise-trader demands.

The approach here follows that in Stambaugh (2014). First, the price and payoff of each

stock i are normalized by expected end-of-period value, so that x̄i = x̄m, and thus p̄i = pm.

The relative pricing error (p̂i − p̄i)/pm appearing in the mispricing measure ψ in equation

(34) is then given by

(p̂i − p̄i)/pm = NφH,i − p̄i/pm
= vi − 1 (43)

with

vi = NφH,i, (44)

using equation (25). The mispricing measure ψ in equation (34) can then be written as

ψ = θ2µ2
(

1

N

) N∑
i=1

(vi − 1)2

1 + θ(vi − 1)
. (45)

Similarly, equation (35) can then be written as

ψ̃ =

(
θ − ν1
θ

)2

ψ + ν22µ
2
(

1

N

) N∑
i=1

1

1 + θ(vi − 1)
. (46)

I assume that the number of stocks, N , is large enough such that the cross-sectional

distribution of the vi’s is well approximated by a continuous distribution for the random

variable, v. Specifically, I assume a Weibull distribution for v. The distribution is defined

for v ≥ 0, consistent with the assumption that noise-traders do not short. The Weibull

distribution has two parameters, determining the distribution’s scale and shape.4 Because∑N
i=1 φH,i = 1, the scale is determined by E(v) = 1, so there is one free parameter k that

determines the distribution’s shape. As k becomes large, the density concentrates around

v = 1, yielding the completely diversified portfolio that puts equal weights on all stocks. As

k becomes small, the mass concentrates toward zero and skewness increases, corresponding

to an undiversified portfolio that puts low weights on most stocks and large weights on a

relative few. Figure 1 displays densities under alternative values of k.

4For a discussion of the Weibull distribution, see for example Johnson and Kotz (1970, chapter 20).
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As Stambaugh (2014) discusses, numerous studies report evidence indicating that direct

holdings of individuals are quite undiversified and exhibit significant commonality across

individuals.5 Commonality in holdings limits the extent to which the low diversification

by individuals washes out when their holdings are aggregated, making the relatively low

values of k plausible to the extent that noise trading reflects direct holdings by individuals.

In contrast, an absence of commonality among noise traders implies a distribution of their

aggregate weights across stocks similar to the density displayed in Figure 1 for k = 20,

corresponding to a relatively well diversified portfolio. In the quantitative analysis here, I

set k = 1 but explore sensitivity to variation between k = 0.5 and k = 2.

The analogs of equations (45) and (46) in terms of the continuous v are

ψ = θ2µ2 E

{
(v − 1)2

1 + θ(v − 1)

}
(47)

and

ψ̃ =

(
θ − ν1
θ

)2

ψ + ν22µ
2 E

{
1

1 + θ(v − 1)

}
. (48)

Applying equation (25) and the same normalization as above in which p̄i = pm allows active

position in equation (42) to be written as

AP =
Mρ2µθ

4c

(
1

N

) N∑
i=1

|NφH,i − 1|

=
Mρ2µθ

4c

(
1

N

) N∑
i=1

|vi − 1| , (49)

and the analog in terms of the continuous v becomes

AP =
Mρ2µθ

4c
E{|v − 1|}. (50)

The errors in managers’ expectations are governed by the parameters ν1 and ν2 in equa-

tion (26). Recall that ν1 is the fraction of noise-trader demands that pervade managers’

expectations. Values of ν1 entertained below cover this parameter’s entire permissible range,

0 ≤ ν1 < 1. The value of ν2 governs the magnitude of managers’ idiosyncratic expectation

errors, and recall ν2 > 0. Because the ζ
(j)
i ’s have unit variance across stocks, ν2 represents

a manager’s typical valuation error relative to correct fundamental value. For much of the

5Studies presenting evidence of poor diversification include Blume, Crockett, and Friend (1974), Lease,
Lewellen, and Schlarbaum (1974), Blume and Friend (1975), Kelly (1995), Polkovnichenko (2005), and
Goetzmann and Kumar (2008). Evidence of significant commonality in individuals’ stock holdings is reported
by Feng and Seasholes (2004), Dorn, Huberman, and Sengmueller (2008), Barber and Odean (2008), and
Barber, Odean, and Zhu (2009).
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analysis below, the value of ν2 ranges from 0.01 to 0.50, corresponding to typical valuation

errors between 1% and 50% of fundamental value. In one case, however, much larger values

of ν2 are entertained, in order to explore more fully the effects of this component of managers’

skill.

The other parameters to be specified are the fraction of the stock market owned by noise

traders, h, the trading cost parameter, c, the number of active managers, M , and one plus

the discount rate for stocks, µ. I set h = 0.25 but explore sensitivity to variation between 0

and 0.5. Noise traders are often viewed as individuals who invest directly on their own. As

discussed by Stambaugh (2014), who incorporates estimates reported by French (2008), the

fraction of the equity market owned directly by individuals has trended steadily downward

over the decades, from nearly 0.50 in 1980 to less than 0.20 in recent years. For trading

costs, I set c = 1 but explore sensitivity to variation between 0.25 and 2.50. With c = 1, the

proportional cost of trading a given amount of a stock is equal to that amount’s fraction of

the stock’s total market capitalization. The number of managers is set at M = 3000, but I

explore sensitivity to variation between 500 and 5000. Finally, I set µ = 1.065, with 6.5%

being roughly the average stock-market return over recent decades, but plausible variation

in this parameter has negligible effects.

Verifying a unique solution to equation (32) seems analytically intractable. With the

above specifications, however, extensive numerical investigations verify a unique solution,

with θ > ν1.

5.2. Equilibrium outcomes

5.2.1. Fee revenue, skill, and mispricing

Figure 2 illustrates the study’s main result. The figure plots active management’s fee revenue

versus ν1, with revenue stated as a fraction of the stock-market’s total value, given by Π in

equation (30). Recall that a higher value of ν1 means that the beliefs of active managers

contain more of the same noise present in the demands of noise traders. A higher ν1 thus

means managers have less skill in assessing stocks’ fundamental values. Observe that fee

revenue is hump shaped with respect to ν1. In particular, as ν1 increases from zero to about

0.6, fee revenue increases from less than 50 basis points of the stock-market’s capitalization

to over 250 basis points. Not until managers’ beliefs are quite strongly in sympathy with

noise-trader demands does a further decline in skill erode revenue. We also see that fee
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revenue is higher for the larger of the two values for ν2. Recall that a higher ν2 also means

less skill, as it corresponds to higher variance of the idiosyncratic noise in managers’ beliefs.

Overall, Figure 2 strikingly illustrates that greater skill for the industry can result in less

revenue.

Define the market share of active management as the ratio of its size (AUM) to the total

amount invested with both active and passive managers. In the model, the latter amount

is the total value of the stock market times the fraction of the market owned by investors,

1− h. Recall that active management’s fee revenue, as opposed to its AUM, is the quantity

determined uniquely in equilibrium. The AUM is simply fee revenue divided by the average

fee rate, f̄ . Therefore, dividing the quantity on the vertical axis of Figure 2 (fee revenue as

a fraction of the stock-market’s value) by f̄(1− h) gives active management’s market share.

If f̄ and h are held fixed, then the model’s implications about market share mirror those

plotted for fee revenue. Suppose, for example, that f̄ = 0.012, the average expense ratio for

active equity mutual funds reported by Pástor, Stambaugh, and Taylor (2019), and recall

the earlier specification of h = 0.25. Then if ν2 stays fixed at 0.01 but ν1 drops from 0.10 to

0.05, thereby raising skill, the market share of active management drops from roughly 100%

to 75% (corresponding to a drop on Figure 2’s vertical axis from about 0.01 to 0.007).

The basic intuition behind the potentially negative effect of increased skill on fee revenue

(or market share) is illustrated by the two panels of Figure 3. Equilibrium fee revenue in

equation (29) depends on ρ and ψ, both of which are endogenous equilibrium quantities.

The degree of managerial skill relevant to fee revenue is summarized by ρ, the correlation

between each manager’s assessed alphas on individual stocks and the stocks’ true alphas.

The amount of fee-relevant mispricing is summarized by ψ, which reflects the magnitudes

of stocks’ true alphas, as summarized their cross-sectional variance. (Recall that correlation

and variance here are with respect to the value-weight measure.) Panel A of Figure 3 confirms

that as ν1 increases, skill as captured by ρ decreases. At the same time, however, more skill

results in more price correction. We see in Panel B that the degree of equilibrium mispricing,

captured by ψ, does indeed increase as ν1 increases (and skill declines). These two effects of

skill—more accurate alpha assessments versus lower alpha magnitudes—affect fee revenue in

opposite directions. Their net effect on fee revenue depends on the product ψρ2, as shown

by the equilibrium value of F in equation (29). Over much of the range for ν1, Figure 2

reveals that as skill decreases, the decline in ρ is outweighed by the increase in ψ, and thus

fee revenue increases. That is, in the determination of equilibrium fee revenue, the weaker

price correction more than offsets managers’ worse assessments of alphas.
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Skill’s role in equilibrium price correction can be understood further from Figure 4. Panel

A displays the effect of ν1 on the quantity 1− θ, which from equation (31) is the fraction of

noise-trader distortions of prices that active management eliminates. As ν1 goes from zero

to one, 1− θ goes from almost one to a value of zero. This near-linear decline in the fraction

of price correction is echoed in Panel B by a near-linear decline in active position, the value

of AP in equation (50). The latter quantity drops from roughly 9% of the stock market’s

value at ν1 = 0 to a zero active position at ν1 = 1. As managers become less skilled, their

aggregate active position declines monotonically, resulting in correspondingly less correction

of noise-trader distortions of prices.

The plots in Figures 2 through 4 display results under two values of ν2, the standard

deviation of the manager-specific valuation errors in equation (7). Throughout those plots,

the higher value of ν2, 0.50, gives greater fee revenue than does the lower value, 0.01. Panel

A of Figure 5 plots fee revenue for the entire range of ν2 up to that higher value of 0.50.

Throughout that range, fee revenue increases as that dimension of skill decreases, i.e, as ν2

increases. As shown in Figure 1, for sufficiently high values of ν1, fee revenue is decreasing in

ν1. Is the same true for ν2? The answer is yes, as revealed in Panel B of Figure 5, but very

large values of ν2 are required before revenue becomes increasing in this dimension of skill,

i.e., decreasing in ν2. For both of the ν1 values (0.05 and 0.10), fee revenue doesn’t become

decreasing in ν2 until ν2 reaches values of roughly 40, corresponding to a 4000% standard

deviation of relative valuation errors. For practical purposes in the setting analyzed here,

fee revenue increases as managers’ idiosyncratic assessments of fair value become noisier.

5.2.2. Robustness to parameter specifications

Figure 6 displays plots confirming robustness to alternative values of k, h, c, and M . Recall

that in Figures 2 through 5, I specify those four parameters as k = 1, h = 0.25, c = 1,

and M = 3000. The four panels of Figure 6 plot fee revenue with respect to each of those

parameters, over ranges extending in both directions around the above values. Each panel

contains four plots, with ν1 set to 0.05 or 0.10 and ν2 set to 0.01 or 0.50. All of the results

in Figure 6 agree with the scenario described earlier, in which fee revenue declines as skill

increases along both of the dimensions governed by ν1 and ν2. That is, at all values of k, h,

c, and M , fee revenue is greater at the higher values of both ν1 and ν2.

Figure 6 also illustrates the roles of k, h, c, and M in determining equilibrium fee revenue.

Understanding these roles provides further insight into the model of active management

20

 Electronic copy available at: https://ssrn.com/abstract=3354074 



presented here. Consider first the noise traders, a key component of the model. Revenue

is decreasing in k, as shown in Panel A. Active management therefore makes more when

noise traders place inappropriately large fractions of their stock investments in a relative

few overvalued stocks. Active management also makes more, not surprisingly, when noise

traders own a larger fraction, h, of the stock market, as shown in Panel B.

Trading costs, which present each fund manager with decreasing returns to scale, are

another essential component of the model. When c in equation (1) is higher, the cost of

trading a given amount of stock is higher. Panel C reveals that an increase in c has a

negligible (barely visible) positive effect on fee revenue when ν2 = 0.01, but that positive

effect is stronger when ν2 = 0.50. Although the idiosyncratic noise in managers’ beliefs,

governed by ν2, washes out of the aggregate active position, higher trading costs cause each

manager’s positions to be less aggressive, and thereby cause the aggregate active position to

be less aggressive. As a result, more of the noise-trader distortions survive in equilibrium,

leaving greater mispricing. The latter means greater fee revenue at the skill levels considered.

The same trading-cost channel is at work in Panel D of Figure 6, which shows that fee

revenue declines as the number of managers, M , increases. This negative effect is barely

visible when ν2 = 0.01, but it is stronger when ν2 = 0.50. Managers are competitive price

takers at all values of M , but when more of them compete, each essentially receives less

money to manage (for a given distribution of fee rates). Trading smaller dollar amounts

lowers proportional trading costs, so raising M essentially plays the same role as lowering

c. The latter statement can made more precise by noting that c and M enter Π, the ratio

of fee revenue to stock-market value plotted in Figure 6, only as the ratio M/c, appearing

in equations (30) and (33). Given the results in Panels C and D of Figure 6, we see Π is

decreasing in M/c.

5.2.3. Potential endogeneity of trading costs and the number of managers

Both the trading-cost parameter, c, and the number of active managers, M , are treated as

exogenous in the equilibrium analysis. An alternative treatment could have one or both

quantities depend endogenously on managers’ skill. For example, greater skill could imply

greater information asymmetry between managers and intermediaries, potentially increasing

what an intermediary charges a manager to trade a given amount of a stock. Such a channel

is somewhat similar to that analyzed by Glode, Green, and Lowery (2012), who show that

an “arms race” to acquire skill by competing financial firms works to those firms’ collective
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disadvantage due to adverse-selection concerns under information asymmetry.

As discussed above, a higher value of the trading-cost parameter, c, implies a higher

amount of fee revenue for active managers. Therefore, an endogenous increase in c can

weaken or reverse a drop in fee revenue that, as shown earlier, can otherwise accompany an

increase in managers’ skill. The magnitude of this potential effect of c does not appear to

be large, however. First recall from Panel C of Figure 6 that, when the skill parameter ν2

is only 0.01, fee revenue is virtually flat over values of c ranging from 0.25 to 2.5. When

ν2 is instead 0.50, meaning a manager’s idiosyncratic valuation error is typically 50% of a

stock’s value, fee revenue is more steeply increasing in c. Nevertheless, observe in Panel

C that if ν1 drops from 0.10 to 0.05, thereby halving the fraction of noise-trader demands

contaminating managers’ beliefs, this increase in skill still implies lower fee revenue even if

c increases tenfold, from 0.25 to 2.5.

The number of active managers, M , could also depend on managers’ skill. If an increase

in skill can bring less aggregate fee revenue, as shown earlier, that lower fee revenue could

induce manager exits. Such exits could occur, for example, due to managers’ fixed costs.

Because aggregate fee revenue is decreasing in M , as shown in Panel D of Figure 6, an

endogenous drop in M can mitigate a drop in fee revenue that can otherwise accompany an

increase in managers’ skill. Because the ratio of M to c is what matters for aggregate fee

revenue, as noted earlier, assessing the magnitude of a potential endogenous response in M

largely echoes the above discussion of a response in c. Specifically, even if a tenfold increase

in M/c accompanies ν1 dropping from 0.10 to 0.05, that increase in skill still implies lower

aggregate fee revenue.

6. Conclusions

Suppose that the active management industry has become more skilled over time, as sug-

gested by the findings of Pástor, Stambaugh, and Taylor (2015). They estimate a proxy for

skill and observe that its distribution across managers trends upward over the past three

decades. In other words, that study’s evidence suggests the active management industry has

become more skilled. The authors suggest education and technology, for example, could be

part of the story. One might even construe the recent trend toward quantitatively managed

“smart-beta” products as a self-proclaimed increase in the industry’s skill (or at least its

“smartness”). The results here show that an increase in overall skill can imply a smaller

equilibrium amount of fee revenue.
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If greater skill spells less revenue, an upward trend in skill represents a potential challenge

for the active management industry in addition to that discussed by Stambaugh (2014): the

downward trend in direct equity ownership by individuals, a potential source of noise trading.

That is, if not only the presence of noise traders declines, but the mispricing they induce

is more skillfully identified, then active management can face a doubly strong headwind

in maintaining its presence in the money management industry. Of course an industry of

competing active managers cannot decide to calm that headwind by becoming less skilled.

Applying more skill is in each manager’s individual interest, because more-skilled managers

make more than less-skilled managers, as also implied by the model presented here.

Fee revenue can decline through a loss of AUM, a drop in the fee rate, or both. The

product of those quantities, fee revenue, is what the model’s equilibrium determines uniquely.

In fact both the AUM market share and the typical fee rate for active management have

declined over recent decades, as noted by Stambaugh (2014). In the case of equity mutual

funds, for example, over the period from 2000 to 2018, active management lost 20% in market

share while essentially reducing its fee rate by 30 basis points.6

For settings in which there is a negative relation between skill and industry size, there is

at least an imperfect analogy to the situation faced by any industry that gets more efficient at

producing a good or service for which the capacity to consume is relatively constrained. The

more efficient the industry becomes in exploiting its productive resources, the less of those

resources it needs to employ. A notable example comes from agriculture, where efficiency

gains play a big role in that sector’s employing a much smaller share of the U.S. labor force

than it once did (e.g., Dimitri, Effland, and Conklin, 2005). The capacity for consuming the

active management industry’s output is constrained in the sense that the industry can go

no further than to drive its equilibrium net alpha to zero. Being more skilled in identifying

mispriced assets can enable the industry to accomplish that job with less resources.

Even though the industry can earn less by becoming better at what it does, the model

does imply that greater skill produces stronger price correction in stocks. With this positive

externality, there can still be a societal benefit to having active managers be more skilled.

Having prices more accurately reflect underlying fundamentals can allow more efficient re-

source allocations.

6Of total equity mutual fund assets, the fraction under active management went from 91% to 71%, while
the asset-weighted average expense ratio of active equity funds went from 1.06% to 0.76%. (Investment
Company Institute, 2019).
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Appendix

Proof of Proposition 1: Define the N -element vectors α, α̃(j), φ(j) and ι, whose i-th

elements equal αi, α̃
(j)
i φ

(j)
i , and 1, respectively. Also define the N × N matrix P with

i-th diagonal element equal to pi and all non-diagonal elements equal to zero. Manager j’s

equilibrium fee revenue in equation (16) can then be written as

F (j) =
f (j)

(
λ(j)φ(j)′α̃(j) − f (j)

)
cφ(j)′P−1φ(j)

, (A1)

and the corresponding Lagrangian to the manager’s maximization problem as described there

is

L =
f (j)

(
λ(j)φ(j)′α̃(j) − f (j)

)
cφ(j)′P−1φ(j)

− ξ̃(ι′φ(j)). (A2)

Differentiating with respect to φ(j) and multiplying through by (c/f (j))
(
φ(j)′P−1φ(j)

)
gives

λ(j)α̃(j) − 2(λ(j)φ(j)′α̃(j) − f (j))

φ(j)′P−1φ(j)
P−1φ(j) − ξι = 0, (A3)

where ξ is the rescaled Lagrange multiplier. Multiplying through by P and rearranging gives

φ(j) =
λ(j)φ(j)′P−1φ(j)

2
(
λ(j)φ(j)′α̃(j) − f (j)

) (Pα̃(j) − ξP ι
)
. (A4)

It follows readily from (27) that the market-weighted combination of the α̃
(j)
i ’s is zero:

ι′Pα̃(j) = 0. Therefore, since ι′φ(j) = 0, multiplying both sides of equation (A4) by ι′

implies ξ = 0, and thus

φ(j) =
λ(j)φ(j)′P−1φ(j)

2
(
λ(j)φ(j)′α̃(j) − f (j)

)Pα̃(j). (A5)

Multiplying both sides of equation (A5) by φ(j)′P−1 and simplifying gives

λ(j)φ(j)′α̃(j) − 2f (j) = 0, (A6)

which is the same as the first-order condition obtained by differentiating L with respect

to f (j), so the latter condition is satisfied for any positive f (j). That is, the choice of fee

rate does not affect maximized fee revenue. Pre- and post-multiplying P−1 by each side of

equation (A5) and then dividing through by φ(j)′P−1φ(j) gives, after rearranging,

φ(j)′P−1φ(j) =
4
(
λ(j)φ(j)′α̃(j) − f (j)

)2
λ(j)

2
α̃(j)′Pα̃(j)

=
4f (j)2

λ(j)
2
α̃(j)′Pα̃(j)

, (A7)
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with the second equality applying equation (A6). Substituting the right-hand side of that

second equality for φ(j)′P−1φ(j) in equation (A1) and again applying equation (A6) gives

F (j) =
λ(j)

2
α̃(j)′Pα̃(j)

4c
. (A8)

To obtain λ(j), first substitute the right-hand side of equation (A7) for φ(j)′P−1φ(j) in equation

(A5) and simplify, again using equation (A6), to obtain

φ(j) =
2f (j)

λ(j)α̃(j)′Pα̃(j)
Pα̃(j) (A9)

=
φ(j)′α̃(j)

α̃(j)′Pα̃(j)
Pα̃(j). (A10)

Multiplying both sides of equation (A10) by α′ gives

φ(j)′α =

(
α′Pα̃(j)

α̃(j)′Pα̃(j)

)
φ(j)′α̃(j), (A11)

and the condition in equation (15) therefore implies

λ(j) =
α′Pα̃(j)

α̃(j)′Pα̃(j)
. (A12)

Substituting the right-hand side of equation (A12) for λ(j) in equation (A8) gives, after

rearranging,

F (j) =
1

4c
(α′Pα)

 α′Pα̃(j)

(α̃(j)′Pα̃(j))
1/2

(α′Pα)1/2

2

. (A13)

The equivalance of equation (A13) to the result stated in the proposition is easily seen by

noting that the value-weighted αi’s and α̃
(j)
i ’s are zero,

N∑
i=1

(
pi

Npm

)
αi =

N∑
i=1

(
pi

Npm

)
α̃
(j)
i = 0 (A14)

and therefore

α′Pα = Npm
N∑
i=1

(
pi

Npm

)
α2
i = NpmVar∗(αi), (A15)

α̃(j)′Pα̃(j) = Npm
N∑
i=1

(
pi

Npm

)
(α̃

(j)
i )2 = NpmVar∗(α̃

(j)
i ), (A16)

and

α′Pα̃(j) = Npm
N∑
i=1

(
pi

Npm

)
αiα̃

(j)
i = NpmCov∗(αi, α̃

(j)
i ). (A17)
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Proof of Proposition 2: Equation (20) for φ
(j)
i follows directly as the i-th element of

φ(j) in equation (A9), substituting from equation (6) for α
(j)
i and from equation (A16) for

α̃(j)′Pα̃(j). From equations (13), (A7) and (A8) and the relation W (j) = F (j)/f (j),

C(j) = c
(
W (j)

)2
φ(j)′P−1φ(j)

= c

(
F (j)

f (j)

)2

φ(j)′P−1φ(j)

= c

(
F (j)

f (j)

)λ(j)2α̃(j)′Pα̃(j)

4cf (j)

φ(j)′P−1φ(j)

= c

(
F (j)

f (j)

)λ(j)2α̃(j)′Pα̃(j)

4cf (j)

 4f (j)2

λ(j)
2
α̃(j)′Pα̃(j)


= F (j), (A18)

giving equation (22). If trading costs equal fee revenue, then C(j)/W (j) = f (j) in equation

(12). Applying the condition in equation (2) then implies that g(j) = 2f (j), giving equation

(23). Equation (24) is equivalent to equation (A12), noting the relations in equations (A16)

and (A17).

Proof of Proposition 3: I conjecture an equilibrium in which the moments in equa-

tions (A16) and (A17), and thus the quantities λ(j) and ρ(j), are equal across managers, and

then I verify that these conditions are satisfied by the resulting equilibrium prices. Define

W =
∑M
j=1W

(j). Let φi denote the weight on stock i in the aggregate active portfolio,

φi =
M∑
j=1

W (j)

W
φ
(j)
i . (A19)

The total stock-market wealth of investors is (1 − h)Npm, and thus φS,i in equation (28)

equals

φS,i =

(
W

(1− h)Npm

)
(φm,i + φi) +

(
1− W

(1− h)Npm

)
φm,i

= φm,i +

(
W

(1− h)Npm

)
φi. (A20)

Substituting into equation (28) gives

hφH,i + (1− h)

(
φm,i +

(
W

(1− h)Npm

)
φi

)
= φm,i, (A21)

or, using equation (A19),

h (φH,i − φm,i) = − W

Npm
φi. (A22)
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Multiplying through by Npm and using equation (A19) gives

h(p̂i − pi) = −
M∑
j=1

W (j)φ
(j)
i . (A23)

Combining equations (A8) and (A9), noting W (j) = F (j)/f (j), gives

W (j)φ
(j)
i =

λ(j)2α̃(j)′Pα̃(j)

f (j)4c

( 2f (j)

λ(j)α̃(j)′Pα̃(j)
Pα̃(j)

)

=

(
λ(j)

2c

)
Pα̃(j)

=

(
λµ

2c

)(
p̃
(j)
i − pi

)
, (A24)

where the last equality uses equation (6) and the assumption that λ(j) = λ. Substituting

into equation (A23), using equation (26), and noting that the idiosyncratic ζ
(j)
i ’s average to

zero across managers,

h(p̂i − pi) = −
M∑
j=1

(
λµ

2c

)(
p̃
(j)
i − pi

)

= −
M∑
j=1

(
λµ

2c

) [
(1− ν1)p̄i + ν1p̂i + ν2ζ

(j)
i p̄i − pi

]

= −
(
Mλµ

2c

)(1− ν1)p̄i + ν1p̂i + ν2p̄i

 1

M

M∑
j=1

ζ
(j)
i

− pi


= −
(
Mλµ

2c

)
[p̄i + ν1(p̂i − p̄i)− pi] . (A25)

Equation (A25) can then be rearranged as

pi = p̄i + θ (p̂i − p̄i) , (A26)

where

θ =
1 + ν1q(θ)

1 + q(θ)
. (A27)

and

q(θ) = λ
Mµ

2ch
. (A28)

Next is to verify that with equilibrium prices of the form in equation (A26), the moments

in equations (A16) and (A17), and thus the quantities λ(j) and ρ(j), are equal across managers,
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as conjectured. First note, using equation (5) and the definition of ψ in equation (18) that

ψ =
N∑
i=1

pi
Npm

µ2

(
p̄i − pi
pi

)2

=
N∑
i=1

pi
Npm

µ2

(
−θ (p̂i − p̄i)
p̄i + θ (p̂i − p̄i)

)2

= θ2µ2
(

1

N

) N∑
i=1

[(p̂i − p̄i)/pm]2

p̄i/pm + θ[(p̂i − p̄i)/pm]
, (A29)

which is the same as equation (34). Proceeding similarly using equation (6) and the definition

of ψ̃(j) in equation (21) gives

ψ̃(j) =
N∑
i=1

pi
Npm

µ2

 p̃(j)i − pi
pi

2

=
µ2

Npm

N∑
i=1

[
(ν1 − θ)(p̂i − p̄i) + ν2ζ

(j)
i p̄i

]2
p̄i + θ(p̂i − p̄i)

= (ν1 − θ)2µ2
(

1

N

) N∑
i=1

[(p̂i − p̄i)/pm]2

p̄i/pm + θ[(p̂i − p̄i)/pm]
+ ν22

µ2

pm

(
1

N

) N∑
i=1

p̄2i
p̄i + θ(p̂i − p̄i)

(
ζ
(j)
i

)2
+2(ν1 − θ)ν2

µ2

pm

(
1

N

) N∑
i=1

(p̂i − p̄i)p̄i
p̄i + θ(p̂i − p̄i)

ζ
(j)
i

=
(ν1 − θ)2

θ2
ψ + ν22

µ2

pm

[
1

N

N∑
i=1

p̄2i
p̄i + θ(p̂i − p̄i)

] [
1

N

N∑
i=1

(
ζ
(j)
i

)2]

+2(ν1 − θ)ν2
µ2

pm

[
1

N

N∑
i=1

(p̂i − p̄i)p̄i
p̄i + θ(p̂i − p̄i)

] [
1

N

N∑
i=1

ζ
(j)
i

]
(A30)

=
(ν1 − θ)2

θ2
ψ + ν22

µ2

pm

[
1

N

N∑
i=1

p̄2i
p̄i + θ(p̂i − p̄i)

]
[1]

+2(ν1 − θ)ν2
µ2

pm

[
1

N

N∑
i=1

(p̂i − p̄i)p̄i
p̄i + θ(p̂i − p̄i)

]
[0]

=

(
θ − ν1
θ

)2

ψ + ν22µ
2
(

1

N

) N∑
i=1

(p̄i/pm)2

p̄i/pm + θ(p̂i − p̄i)/pm
, (A31)

which is identical across j and the same as equation (35). The equality in (A30) follows

from the assumption that the ζ
(j)
i ’s are independent of the p̄i’s and p̂i’s across i, so that the

mean of the product is the product of the means. Applying again the assumed idiosyncratic

properties of the ζ
(j)
i ’s along with equations (5) and (6) and the definition of ρ(j) in equation

(19) gives

(
ψ̃ψ

)1/2
ρ(j) =

N∑
i=1

pi
Npm

µ2

(p̃
(j)
i − pi)(p̄i − pi)

pi


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=
µ2

Npm

N∑
i=1

[
(1− ν1)p̄i + ν1p̂i + ν2ζ

(j)
i p̄i − p̄i − θ(p̂i − p̄i)

]
(p̄i − pi)

pi

=
µ2

pm

(
1

N

) N∑
i=1

[
(θ − ν1)(p̄i − p̂i) + ν2ζ

(j)
i p̄i

]
(p̄i − pi)

pi

=
µ2

pm

(
1

N

) N∑
i=1

θ − ν1
θ

(p̄i − pi)2

pi
+ ν2

µ2

pm

(
1

N

) N∑
i=1

ζ
(j)
i

θ(p̄i − p̂i)p̄i
p̄i + θ (p̂i − p̄i)

=
θ − ν1
θ

µ2

pm

(
1

N

) N∑
i=1

(p̄i − pi)2

pi
+ 0

=
θ − ν1
θ

ψ, (A32)

which is also identical across j. Equation (36) follows immediately from equation (A32). The

verification for the cross-sectional moments is thus complete, implying that λ(j) in equation

(A12) is also identical across j. Also, equation (29) then follows directly from equation (17).

Equation (30) directly follows, multiplying F by M and then dividing by the stock market’s

value, Npm. Using equation (A12) along with equation (A32) gives

λ =
α′Pα̃(j)

α̃(j)′Pα̃(j)

=
Cov∗(α̃i, αi)

Var∗(α̃i)

=
ρ(ψψ̃)1/2

ψ̃

=
θ − ν1
θ

(
ψ

ψ̃

)
, (A33)

which when substituted into equation (A28) gives equation (33).

Proof of Proposition 4: From the previous proposition, all managers earn the same

equilibrium fee revenue, F , so W (j) = F/f (j). Because W =
∑M
j=1W

(j),

W (j)

W
=

f̄

Mf (j)
, (A34)

with f̄ defined in equation (38). Using these weights along with previous results gives

φi =
M∑
j=1

W (j)

W
φ
(j)
i

=
M∑
j=1

f̄

Mf (j)

2f (j)

α̃(j)′Pα
Pα̃(j)

=
2f̄µ

Npmρ
(
ψψ̃

)1/2
(

1

M

) M∑
j=1

(
p̃
(j)
i − pi

)
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=
2f̄µ

Npmρ
(
ψψ̃

)1/2
(

1

M

) M∑
j=1

[
(ν1 − θ)(p̂i − p̄i) + ν2ζ

(j)
i p̄i

]

=
2f̄µ

Npm
(
θ−ν1
θ

)
ψ

(
1

M

) M∑
j=1

[
(ν1 − θ)(p̂i − p̄i) + ν2ζ

(j)
i p̄i

]

=
2f̄µ

Npm
(
θ−ν1
θ

)
ψ

(ν1 − θ)(p̂i − p̄i) + ν2p̄i

(
1

M

) M∑
j=1

ζ
(j)
i


=

2f̄µ

Npm
(
θ−ν1
θ

)
ψ

[(ν1 − θ)(p̂i − p̄i) + 0]

= −2f̄µθ

Nψ

(
p̂i − p̄i
pm

)
, (A35)

which is equation (37).
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Figure 1. Noise Trading Densities. The figure plots alternative specifications of a
Weibull density for approximating the cross-sectional distribution of NφH,i, where N is the
number of stocks in the market and φH,i is the aggregate weight that noise traders place in
stock i. All densities have 1.0 as the mean and differ with respect to the shape parameter k.
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Figure 2. Fee revenue versus ν1. The parameter ν1 represents the fraction of noise-
trader distortions present in active manager’s beliefs, and ν2 is the standard deviation of each
manager’s idiosyncratic deviations of beliefs relative to fundamental value. Fee revenue is stated
as a fraction of the stock market’s total capitalization.
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B. Equilibrium mispricing (A)

Figure 3. Fund skill and stock mispricing versus ν1. The parameter ν1 represents
the fraction of noise-trader distortions present in active manager’s beliefs, ν2 is the standard
deviation of each manager’s idiosyncratic deviations of beliefs relative to fundamental value, ρ
reflects skill, and ψ reflects mispricing.
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Figure 4. Mispricing correction and active position versus ν1. The parameter ν1 rep-
resents the fraction of noise-trader distortions present in active manager’s beliefs, and ν2 is the
standard deviation of each manager’s idiosyncratic deviations of beliefs relative to fundamental
value. The quantity 1− θ, plotted in Panel A, is the fraction of noise-trader distortions elimi-
nated by active management. Active management’s active position (AP ), plotted in Panel B,
is stated as a fraction of the stock market’s total capitalization.
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Figure 5. Fee revenue versus ν2. The parameter ν2 is the standard deviation of each
manager’s idiosyncratic deviations of beliefs relative to fundamental value, and ν1 represents
the fraction of noise-trader distortions present in active manager’s beliefs. Panel B displays the
relation over an expanded range relative to that in Panel A.
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Figure 6. Fee revenue versus k, h, c, and M . The dispersion and skewness in noise-
traders’s demands are decreasing in the parameter k; h is the fraction of the market owned by
noise traders; proportional stock-trading costs increase in the parameter c; M is the number of
active managers. The parameter ν1 represents the fraction of noise-trader distortions present
in active manager’s beliefs, and ν2 is the standard deviation of each manager’s idiosyncratic
deviations of beliefs relative to fundamental value.
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